Frequently Asked Questions

What does Terraformation do? 
So, what do you do?

Terraformation’s mission is to restore the planet’s forests in order to capture carbon, revive ecosystems, and build thriving communities. To do this, we run a forest carbon accelerator, helping early-stage land restoration teams succeed at scale.

Copy Link
How does Terraformation’s Seed to Carbon Forest Accelerator work?

Our Seed to Carbon Forest Accelerator provides early-stage forestry teams with project financing, as well as two years of training and technical support to scale their operations.

Forestry teams receive access to Terraformation’s tools — which include insights from our carbon scientists and forestry experts, along with project support, training, and plant-tracking software — all of which improve project transparency and forest resiliency.

As the world’s first biodiversity-focused, carbon-funded forest accelerator, we aim to help forest teams achieve responsible restoration at scale.

Accelerator graduates will generate revenue to support their long-term success via the sale of high-quality carbon credits. Accelerator funders support the forest restoration cohorts and gain access to future carbon credits from their projects. 

The Accelerator is structured in several phases, and is free for forestry teams accepted into the program. Learn more.

Copy Link
How do I join the Accelerator?

You can apply to join the Seed to Carbon Forest Accelerator here. We’re currently accepting applications for our next cohort. 

Copy Link
Who can apply to the Accelerator and how do you select participants?

Our Accelerator is open to forest creation and restoration teams of all types and from all locations.

We assess a range of criteria before selecting participants. Some of these include:

1. Interest in a scalable and sustainable restoration model, such as biodiverse reforestation using native species, agroforestry, silviculture, or silvopasture
2. Desire to learn about carbon credit financing
3. Prior experience in ecosystem restoration
4. Long-term access to land, with rights to reforest it
5. Positive impact on local communities.

Copy Link
Why an accelerator?

The accelerator model is not new. The tech industry has long run accelerators that provide wraparound business support to help early-stage startups successfully launch and scale. 

In 2022, our team interviewed 230 forestry organizations across 63 countries to learn about their biggest challenges. Ninety-five percent of respondents cited funding as their top obstacle, followed by seed and sapling supply, and team training. 

Based on those responses, we see a need for the holistic support an accelerator program can provide to teams pursuing land restoration and natural climate solutions at scale.

Read more about why we developed this model. 

Copy Link
How can I purchase carbon credits?

Corporations, foundations, and even individuals can fund Accelerator cohorts. In exchange, they receive access to the team’s high-quality, verified carbon credits. Learn more about current offerings.

Copy Link
What makes your carbon credits different?

Creating biodiverse forests and supporting local communities are embedded in our company DNA and drive our decisions on team and project selection. 

Our approach isn’t solely focused on generating one-dimensional carbon credits for the lowest cost. Rather, the carbon credits from our projects include many additional benefits that range from enhanced biodiversity to livelihood creation and food security. In our view, there is a “right way” of forest carbon capture that supports ecosystems, strengthens the services they provide to us (such as flood protection and erosion control), and aligns with many UN Sustainable Development Goals.

There is a growing interest in nature-based solutions to help solve climate change, and demand for higher-quality offsets is growing. We believe “multi-benefit” carbon projects are the answer to this demand, as they provide a much broader impact and are more likely to be stable and long-lasting stores of the carbon they capture.

Copy Link
How do forests help solve climate change?
How does Terraformation’s work help solve climate change?

Terraformation’s aim is to restore the planet’s native forests in the next decade to help stabilize our climate.

Responsible reforestation is the most immediately scalable carbon capture solution today. According to a 2019 study by Griscom et al., global reforestation could deliver one-third of all natural carbon capture. Compared to other embryonic-stage technology such as direct air capture, it is the only carbon capture solution ready to function at the gigaton level. 

At Terraformation, we restore degraded land into thriving and productive ecosystems that benefit both the climate and local communities. We prioritize native, biodiverse forests, which can capture more carbon over the long term than monoculture plantation forests. These forests are more resilient to climatic variations and negative climate-induced impacts such as an increasing prevalence of pests and diseases.  

To achieve mass-scale native restoration, we enable early-stage forestry teams to launch, build, and scale reforestation projects via our Seed to Carbon Forest Accelerator.  

The Accelerator equips early-stage projects with the following support, designed to overcome the largest startup challenges:

We have developed and tested a suite of tools and services to solve these bottlenecks across diverse locations. These include:

  • Early-stage project financing, particularly through carbon credit development and sales
  • Open-source software to increase project transparency and reduce risk
  • Technical training and site-specific forestry planning
  • Seed banking solutions to protect seed viability
  • Additional sustainable business model development to complement carbon revenue
Copy Link
Isn’t it better to reduce fossil fuel emissions?

A full climate solution will require both a clean energy transition and carbon capture.

The latest IPCC reports warn that we have less than a decade to curb emissions to a point that will allow for a livable future across many parts of our planet. Yet even extremely ambitious national plans only aim to reach net zero by 2040 or 2050. And then, we’ll still need to remove the existing surplus of carbon dioxide in the atmosphere to reduce climate impacts. 

Carbon drawdown from reforestation can help recapture historical emissions and help us reach global net zero sooner, closing the gap between current reduction efforts and the rapid climate action we need.

Copy Link
Isn’t it a better idea to stop deforestation?

Ending the destruction of native forests is essential. We lose about 15 to 20 million acres of native forests every year. That’s an area the size of Portugal. Every acre destroyed releases the forest’s stored carbon back into the atmosphere.

In fact, forest loss is one of the biggest emissions sources on the planet. Stopping deforestation will reduce those emissions and keep the carbon locked in existing forests out of the atmosphere. 

But ending deforestation won’t draw more carbon out of the atmosphere. We need to both protect existing forests and create additional sequestration capacity, on top of what we have, to stabilize our climate. 

Reforestation goes beyond the trees. Forests are home to 80% of the planet’s terrestrial species of animals, plants, and insects. Restoring biodiverse forests means bringing back entire ecosystems.

Copy Link
What about other carbon capture technologies?

Direct-air carbon capture, olivine weathering, and regenerative agriculture all offer promising carbon drawdown opportunities. But none of these technologies are as thoroughly tested, low-risk, or immediately scalable as reforestation. Time is not on our side.

Climate models show that to limit the irreversible impacts of global warming, we’ll need to massively increase carbon drawdown this decade. That means we must employ every strategy we can, especially those that are immediately deployable, and scale them as quickly as possible, even as we develop new technologies

Copy Link
Can’t we just find the fastest-growing trees and plant lots of those?

While plantations of fast-growing trees can grow and sequester carbon rapidly in the short term, in the long term they provide less efficient and resilient carbon sinks than multi-species native forests. Hard-won lessons over the past few decades have taught us that monoculture plantations, especially of non-native species, don't result in long-term, sustainable carbon sinks.

Copy Link
Why do you focus on biodiverse native forests?

Native tropical and subtropical forests can hold many times more carbon than plantation forests. They’re also more resilient against pests, disease, and extreme weather conditions than single-species tree plantations. This means that the carbon they sequester is more secure. Native species forests can also support two to three times as much biodiversity as plantation stands. 

On the flip side, planting non-native species can actively harm existing ecosystems. For example, they can disrupt local water cycles by sucking up much more water than native species, which are uniquely adapted to their ecosystems. Overtaxing water supplies can lead to high tree mortality in the long term, as well as hurt communities that depend on local water supplies.

Despite the huge benefits of native-species forests, nearly half of current global tropical and subtropical forest restoration commitments are for single-species commercial tree plantations. For a resilient climate solution, we need to shift the mix of restoration projects towards native-species forests. We cannot solve the climate crisis without prioritizing biodiversity.

Copy Link
Aren’t trees too slow?

After we restore forest cover, it will take another two to three decades for the trees to grow and sequester billions of tons of CO2.  

Though 40 years may sound like a long time frame, it’s much shorter than the time it would take to bring any other carbon capture solution to scale. Unlike other carbon capture technology, forests are enduring and self-replicating — they continually sequester carbon year over year.  

Forests are already a proven carbon capture solution. No other proposed carbon capture technology is ready to deploy at scale today. Many of the proposed technological solutions appear to offer quick fixes, but none are yet commercially mature. This process can take decades; once mature, technological solutions will face the same massive scaling challenges that face restoration.

In contrast, restoration is already commercially mature, and faces only the remaining scaling challenges. For an extended discussion of this technology-deployment timeline issue, see this blog post.

Copy Link
Is there research on the climate benefits of reforestation?

Lots! Researchers around the globe continue to refine estimates of the climate and ecosystem benefits of large-scale reforestation. Some of the most compelling recent studies address natural forest regeneration, the potential of global tree restoration, the carbon accumulation potential of natural forests, and priority areas for ecosystem restoration.

Check out some of the most recent studies:‍

2017

  • Natural climate solutions. Proceedings of the National Academy of Sciences. October 2017. (here) ‍

2019

  • Regenerate natural forests to store carbon. Science.  April 2019. (here)
  • The global tree restoration potential. Science. July 2019. (here)

2020

  • Carbonshot report. World Resources Institute. January 2020. (here)
  • A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances. September 2020. (here)
  • Mapping carbon accumulation potential from global natural forest regrowth. Nature. September 2020. (here)
  • The global forest watch map. The Nature Conservancy and World Resources Institute. September 2020. (here)
  • Global priority areas for ecosystem restoration. Nature. October 2020. (here)
Copy Link
Don’t most reforestation projects fail?
Most trees in reforestation projects die before they reach maturity. How will you avoid this?

Data on reforestation project failure rates is surprisingly scarce. While there are many single data points, we don’t have good global data across diverse reforestation efforts. Despite the lack of consistent data, we do know that many reforestation projects fail to keep trees alive for the long term.  

One reason for project failure is planting the wrong species in the wrong places. Many projects focus on planting fast-growing, single-species tree plantations. While these projects offer some short-term economic opportunities, they suffer from high tree mortality and a lack of ecological stability. 

The early growing years are the most critical for a restoration project. In highly degraded landscapes, the overstory that protects young saplings doesn’t exist. This leaves them particularly vulnerable to drought, invasive species, disease, pests, overgrazing, and wildfire. Yet once established, structurally complex native ecosystems are far more resilient than plantations to weather and environmental variations sure to occur over decades of growth.

Copy Link
If it’s so simple, why hasn’t someone done it yet?

Planting a tree sounds easy. But restoring an ecosystem is not. It requires specific ecological knowledge, the right tools, early-stage financial support, and long-term management. 

Finding native seeds poses the first huge challenge. Centuries of unsustainable land use have rendered many native species extremely rare. That means restorationists have to collect seeds from the wild, often from difficult-to-access locations, and then store them in stable, climate-controlled conditions to keep them viable. Forest creators must carefully tend and monitor the saplings for years, guard against invasive species and pests, and protect the trees from premature harvesting. You can learn more about the need for seed banking in our report, The Global Seed Bank Index.

Large-scale reforestation is not simple, but it is possible. Terraformation’s Seed to Carbon Forest Accelerator provides restoration teams with detailed and location-specific training, tools, and resources to overcome each of these challenges, helping partners establish ecosystems that will thrive for generations.

Copy Link
Won’t forests regrow themselves?

Given enough time, and left undisturbed, many ecosystems can naturally regenerate. But natural regeneration can be slow, or nearly impossible, in arid regions and highly degraded landscapes, where few native seed sources remain, and invasive species can outcompete slow-growing native plants.

Actively reestablishing native species with the support of irrigation, native plant propagation, and pest protection during the vulnerable early-growth stages multiplies the likelihood of success and accelerates the recovery of native forests.

Copy Link
Does planting trees change land albedo?

In certain areas, planting new forests changes the albedo of the land such that the increased heat absorbed by the darker land cover offsets the cooling effects of the CO2 sequestered by the new forests. The best research suggests that this is most common in boreal (northern) regions, such as land in Canada and Russia.

For this reason, Terraformation focuses on restoring land in temperate and tropical regions. There are still several billion acres available for restoration outside of boreal zones.

Copy Link
What about forest fires?

The number of acres burned in the western US every year has been creeping up steadily for the last five decades. Wildfire season is becoming longer and more severe — which has led to a dramatic drop in post-fire tree regeneration. 

Despite these adverse conditions, forests remain one of the best climate solutions we have today. In order to restore these carbon sinks (and avoid losing entire species and ecosystems) we need human intervention after a fire — starting with seeds.

By saving a broad range of seeds from fire-prone ecosystems now, we can help native forests return — restoring these valuable carbon sinks.

Copy Link
Where will you get water for all those trees?

Freshwater shortages pose enormous challenges to large-scale forest restoration, particularly in dry regions. Planting swaths of new trees in water-constrained regions can overdraw existing supplies on which local communities depend.

Reverse osmosis can purify nearby brackish or saltwater sources to provide supplemental water, solving the water shortage and accelerating ecosystem restoration. While previously considered too energy-intensive to be economical, rapidly declining solar prices now make it possible to do this on a very large scale in many parts of the world.

This is exactly what we are doing at our pilot restoration site on Hawaiʻi Island. We're running the world's largest off-grid, 100% solar-powered desalination system and using it to accelerate restoration of a Hawaiian dry tropical forest ecosystem. 

While supplemental irrigation can help ecosystems reestablish themselves, we won’t need to provide new forests with fresh water forever. Under normal conditions, young saplings benefit from the protective cover and deep roots of larger, established trees. The roots of mature trees bring up moisture from deep soil layers to hydrate young sapling roots, and their canopy lowers the forest temperature, reducing evaporation. In highly degraded landscapes, those symbiotic relationships don’t exist, and the new forests need support as they develop.

Once established, forests become largely self-sustaining and cycle their own water. In fact, forests drive the global water cycle and have enormous influence on rainfall patterns across the planet. Recent research shows that the massive deforestation of the last two centuries has dramatically altered rainfall patterns across the globe.

Copy Link
How do you work with partners?
What about Indigenous and local communities?

We support Indigenous stewardship of land. We rely on wisdom from local communities to ensure that restoration efforts succeed. Many Indigenous cultures have deep knowledge of the unique ecology of their lands — developed over generations — and advanced techniques for managing land sustainably. Community land tenure promotes forest conservation and reduces both clearing and disturbance of forests.

Copy Link
What do your partnerships look like?

We work on the ground in communities. We collaborate with our forestry partners throughout the world who are working to restore biodiverse, carbon-thirsty native forests. We choose Accelerator participants based on the potential impact of their projects — we look for efforts that will increase biodiversity and sequester substantial carbon over the long term. We also select partners who prioritize community benefits like sustainable livelihoods, clean water, gender equality, and education. Every organization we work with has deep local relationships, or is led by community members.  

Learn more about how we work with partners through the Seed to Carbon Forest Accelerator.

Copy Link